

Envirolab Services (WA) Pty Ltd trading as MPL Laboratories ABN 53 140 099 207

16-18 Hayden Court Myaree WA 6154 ph +61 8 9317 2505 fax +61 8 9317 4163 lab@mpl.com.au www.mpl.com.au

Certificate of Analysis PEI0228

Client Details

Client Harvey Water
Contact Aled Lewis

Address PO Box 468, HARVEY, WA, 6220

Sample Details

Your ReferenceWater AnalysisNumber of Samples2 WaterDate Samples Received05/09/2023Date Samples Registered05/09/2023

Analysis Details

 $\label{please refer} \mbox{Please refer to the following pages for results, methodology summary and quality control data.}$

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details

Date Results Requested by 11/09/2023

Date of Issue 20/09/2023

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \ast .

Authorisation Details

Results Approved By Andrew Townsend, Microbiological Analyst

Heram Halim, Operations Manager

Michael Hall, Inorganics & Metals Supervisor

Travis Carey, Organics Supervisor

Laboratory Manager Michael Kubiak

Your Reference: Water Analysis

Samples in this Report

Envirolab ID	Sample ID	Matrix	Date Sampled	Date Received
PEI0228-01	Harvey DAM	Water	04/09/2023	05/09/2023
PEI0228-02	SBR DECANT	Water	04/09/2023	05/09/2023

Your Reference: Water Analysis

Organochlorine Pesticides - Low Level (Water)

				D=10000
Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02
Your Reference			Harvey DAM	SBR DECANT
Date Sampled			04/09/2023	04/09/2023
alpha-BHC	μg/L	0.050	<0.050	<0.050
Hexachlorobenzene	μg/L	0.010	<0.010	<0.010
beta-BHC	μg/L	0.050	<0.050	<0.050
gamma-BHC	μg/L	0.050	<0.050	<0.050
delta-BHC	μg/L	0.050	<0.050	<0.050
Heptachlor	μg/L	0.010	<0.010	<0.010
Aldrin	μg/L	0.010	<0.010	<0.010
Heptachlor epoxide	μg/L	0.010	<0.010	<0.010
trans-Chlordane	μg/L	0.010	<0.010	<0.010
cis-Chlordane	μg/L	0.010	<0.010	<0.010
Endosulfan I	μg/L	0.020	<0.020	<0.020
4,4'-DDE	μg/L	0.010	<0.010	<0.010
Dieldrin	μg/L	0.010	<0.010	<0.010
Endrin	μg/L	0.010	<0.010	<0.010
4,4'-DDD	μg/L	0.010	<0.010	<0.010
Endosulfan II	μg/L	0.020	<0.020	<0.020
4,4'-DDT	μg/L	0.0060	<0.0060	<0.0060
Endosulfan sulfate	μg/L	0.020	<0.020	<0.020
Endrin ketone	μg/L	0.050	<0.050	<0.050
Methoxychlor	μg/L	0.020	<0.020	<0.020
Mirex	μg/L	0.020	<0.020	<0.020
Total +ve OCP	μg/L	0.0060	<0.0060	<0.0060
Surrogate 2-Chlorophenol-D4	%		100	99.6

Your Reference: Water Analysis

Organophosphorus Pesticides - Low Level (Water)

Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02
Your Reference			Harvey DAM	SBR DECANT
Date Sampled			04/09/2023	04/09/2023
Dichlorvos	μg/L	0.050	<0.050	<0.050
Dimethoate	μg/L	0.10	<0.10	<0.10
Diazinon	μg/L	0.010	<0.010	<0.010
Chlorpyrifos-methyl	μg/L	0.050	<0.050	<0.050
Parathion-methyl	μg/L	0.050	<0.050	<0.050
Ronnel	μg/L	0.050	<0.050	<0.050
Fenitrothion	μg/L	0.050	<0.050	<0.050
Malathion	μg/L	0.050	<0.050	<0.050
Chlorpyrifos	μg/L	0.0090	<0.0090	<0.0090
Parathion	μg/L	0.0040	<0.0040	<0.0040
Bromophos-ethyl	μg/L	0.050	<0.050	<0.050
Ethion	μg/L	0.050	<0.050	<0.050
Coumaphos	μg/L	0.050	<0.050	<0.050
Disulfoton	μg/L	0.050	<0.050	<0.050
Fenamiphos	μg/L	0.050	<0.050	<0.050
Fenthion	μg/L	0.050	<0.050	<0.050
Methidathion	μg/L	0.050	<0.050	<0.050
Mevinphos	μg/L	0.050	<0.050	<0.050
Phorate	μg/L	0.050	<0.050	<0.050
Phosalone	μg/L	0.050	<0.050	<0.050
Azinphos-methyl	μg/L	0.020	<0.020	<0.020
Surrogate 2-Chlorophenol-D4	%		68.7	99.5

Your Reference: Water Analysis

Phthalates (Water)

Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02
Your Reference			Harvey DAM	SBR DECANT
Date Sampled			04/09/2023	04/09/2023
Dimethyl phthalate	μg/L	10	<10	<10
Diethyl phthalate	μg/L	10	<10	<10
Di-n-butyl phthalate	μg/L	50	<50	<50
Butyl benzyl phthalate	μg/L	10	<10	<10
Di-n-octyl phthalate	μg/L	10	<10	<10
Di(2-ethylhexyl) adipate (DEHA)	μg/L	50	<50	<50
Bis(2-ethylhexyl) phthalate (DEHP)	μg/L	50	<50	<50
Surrogate p-Terphenyl-D14	%		## [2]	76.0

Your Reference: Water Analysis

SCSG Banned Pesticides (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Hexachlorobenzene	mg/L	0.00050	0.0010	<0.00050	<0.00050
gamma-BHC	mg/L	0.000050	0.010	<0.000050	<0.000050
Chlordane	mg/L	0.000010	0.0020	<0.000010	<0.000010
Aldrin+Dieldrin	mg/L	0.000020	0.00030	<0.000020	<0.000020
DDT	mg/L	0.000060	0.0090	<0.000060	<0.000060

Your Reference: Water Analysis

SCSG Organic Compounds: Industrial Hydrocarbons (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
EDTA	mg/L	0.10	0.25	<0.10	<0.10
NTA	mg/L	0.020	0.20	<0.020	<0.020
Vinyl chloride	mg/L	0.00010	0.00030	<0.00010	<0.00010
Epichlorohydrin*	mg/L	0.00025	0.00050	<0.00025	<0.00025
1,1-Dichloroethene	mg/L	0.0010	0.030	<0.0010	<0.0010
Methylene chloride	mg/L	0.0040	0.0040	<0.0040	<0.0040
1,2-dichloroethene	mg/L	0.0020	0.060	<0.0020	<0.0020
1,1-Dichloroethane	mg/L	0.00050	0.0050	<0.00050	<0.00050
Benzene	mg/L	0.00020	0.0010	<0.00020	<0.00020
1,2-Dichloroethane	mg/L	0.00050	0.0030	<0.00050	<0.00050
Trichloroethene	mg/L	0.0010	0.0050	<0.0010	<0.0010
Toluene	mg/L	0.0010	0.80	<0.0010	<0.0010
Tetrachloroethene	mg/L	0.0010	0.050	<0.0010	<0.0010
Chlorobenzene	mg/L	0.0010	0.30	<0.0010	<0.0010
Ethylbenzene	mg/L	0.0010	0.30	<0.0010	<0.0010
Total Xylene	mg/L	0.0030	0.60	<0.0030	<0.0030
Styrene	mg/L	0.0010	0.030	<0.0010	<0.0010
1,3-Dichlorobenzene	mg/L	0.0010		<0.0010	<0.0010
1,4-Dichlorobenzene	mg/L	0.00020	0.040	<0.00020	<0.00020
1,2-Dichlorobenzene	mg/L	0.00050	1.5	<0.00050	<0.00050
Hexachlorobutadiene	mg/L	0.00030	0.00070	<0.00030	<0.00030
Trichlorobenzenes (Total)	mg/L	0.0010	0.030	<0.0010	<0.0010
Benzo(a)pyrene	mg/L	0.000005	0.000010	<0.000005	<0.00005

Your Reference: Water Analysis

SCSG Pesticides (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Amitrole	mg/L	0.00090	0.0090	<0.00090	<0.00090
Diquat	mg/L	0.00010	0.0070	<0.00010	<0.00010
Clopyralid	mg/L	0.0010	2.0	<0.0010	<0.0010
Paraquat	mg/L	0.00010	0.020	<0.0010	<0.0010
MCPA	mg/L	0.00010	0.040	<0.00010	<0.00050
2,4-D	mg/L	0.00010	0.030	<0.00010	<0.00010
Triclopyr	mg/L	0.0010	0.020	<0.0010	<0.0010
Diuron	mg/L	0.0050	0.020	<0.0050	<0.0050
Picloram	mg/L	0.0010	0.30	<0.0010	<0.0010
Simazine	mg/L	0.00010	0.020	<0.00010	<0.00010
Atrazine	mg/L	0.00050	0.00050	<0.00050	<0.00050
Heptachlor	mg/L	0.000050	0.00030	<0.000050	<0.000050
Chlorfenvinphos	mg/L	0.00050	0.0020	<0.00050	<0.00050
Endosulfan	mg/L	0.00050	0.020	<0.00050	<0.00050
Propiconazole A	mg/L	0.00010	0.10	<0.00010	<0.00010
Hexazinone	mg/L	0.0020	0.30	<0.0020	<0.0020
Temephos	mg/L	0.0050	0.40	<0.0050	<0.0050

Your Reference: Water Analysis

SCSG Treatment Organics (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Acrylamide	mg/L	0.00010	0.00020	<0.00010	<0.00010
Carbon Tetrachloride	mg/L	0.00050	0.0030	<0.00050	<0.00050
Surrogate	%			101	100

Your Reference: Water Analysis

Acid Extractable Metals (Water)

Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02
Your Reference			Harvey DAM	SBR DECANT
Date Sampled			04/09/2023	04/09/2023
Phosphorus	mg/L	0.050	<0.050	0.33

Your Reference:

Water Analysis Certificate of Analysis Generated: 20/09/2023 15:36:57 Revision: R-00

Acid Extractable Low Level Metals (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Silver	μg/L	1.0	100	<1.0	<1.0
Arsenic	μg/L	1.0	10	<1.0	<1.0
Beryllium	μg/L	0.50	60	<0.50	<0.50
Lithium	μg/L	1.0		<1.0	<1.0
Antimony	μg/L	1.0	3.0	<1.0	<1.0
Selenium	μg/L	1.0	10	<1.0	<1.0

Your Reference: Water Analysis

Dissolved Metals (Water)

Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02
Your Reference			Harvey DAM	SBR DECANT
Date Sampled			04/09/2023	04/09/2023
Sulfur	mg/L	0.50	5.8	180
Silica*	mg/L	0.20	4.0	4.5

Your Reference: Water Analysis

Dissolved Low Level Metals (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Aluminium	μg/L	10		<10	<10
Boron	μg/L	20	4000	34	27
Barium	μg/L	1.0	2000	16	3.7
Cadmium	μg/L	0.10		<0.10	<0.10
Cobalt	μg/L	1.0		<1.0	<1.0
Chromium	μg/L	1.0		<1.0	<1.0
Copper	μg/L	1.0		<1.0	6.6
Iron	μg/L	10		24	440
Gallium	μg/L	1.0		<1.0	<1.0
Mercury	μg/L	0.050		<0.050	<0.050
Manganese	μg/L	1.0		<1.0	<1.0
Molybdenum	μg/L	1.0		<1.0	1.9
Nickel	μg/L	1.0		<1.0	2.3
Lead	μg/L	1.0		<1.0	<1.0
Strontium	μg/L	1.0		53	31
Titanium	μg/L	1.0		<1.0	<1.0
Uranium	μg/L	1.0		<1.0	<1.0
Vanadium	μg/L	1.0		<1.0	<1.0
Zinc	μg/L	1.0		<1.0	4.3

Your Reference: Water Analysis Revision: R-00 Certificate of Ar

Sodium Adsorption Ratio (Water)

Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02
Your Reference			Harvey DAM	SBR DECANT
Date Sampled			04/09/2023	04/09/2023
Sodium Adsorption Ratio	-	0.0	3.2	28

Your Reference: Water Analysis

Inorganics - Physical Parameters (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
pH	pH units		6.5-8.5	7.8	7.8
Total Dissolved Solids	mg/L	5.0		250	1500
Total Suspended Solids	mg/L	5.0		<5.0	<5.0
Turbidity	NTU	0.10		2.4	3.8
Dissolved Oxygen*	mg/L	0.10		10	7.1
Colour (True)	PCU	5.0		7.8	19

Your Reference: Water Analysis

Inorganics - Ionic Balance and Indexes (Water)

Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02
Your Reference	Oilits	. 4-	Harvey DAM	SBR DECANT
Date Sampled			04/09/2023	04/09/2023
Date Sampled			04/09/2023	04/09/2023
Bicarbonate Alkalinity as CaCO3	mg/L as CaCO3	5.0	30	330
Carbonate Alkalinity as CaCO3	mg/L as CaCO3	5.0	<5.0	<5.0
Hydroxide OH- as CaCO3	mg/L as CaCO3	5.0	<5.0	<5.0
Total Alkalinity as CaCO3	mg/L as CaCO3	5.0	30	330
Chloride	mg/L	1.0	120	240
Sulfate	mg/L	1.0	17	580
Calcium	mg/L	0.50	7.4	17
Magnesium	mg/L	0.50	11	4.2
Potassium	mg/L	0.50	2.0	11
Sodium	mg/L	0.50	60	510
Hardness as CaCO3	mg/L	3.0	66	60
Ionic Balance	%		-5.6	-3.8
Total Anions	mg/L	7.0	170	1100
Anions as meq	meq/L	0.59	4.2	24
Total Cations	mg/L	2.0	81	540
Cations as meq	meq/L	0.10	4.0	24
Langelier Saturation Index	-		0.68	2.0

Your Reference: Water Analysis

Inorganics - Miscellaneous and Common Anions (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Bromide	mg/L	0.50		<0.50	<0.50
Fluoride	mg/L	0.10	1.5	<0.10	<0.10
Iodide	mg/L	0.10	0.50	<0.10	<0.10
Sulfide*	mg/L	0.50	0.050	<0.50	<0.50

Your Reference: Water Analysis

Inorganics - Organic Carbons (Water)

Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02	
Your Reference			Harvey DAM	SBR DECANT	
Date Sampled			04/09/2023	04/09/2023	
Total Organic Carbon	mg/L	1.0	4.0	8.2	
Dissolved Organic Carbon	mg/L	1.0	3.9	6.4	

Your Reference: Water Analysis

Inorganics - Nutrients (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Ammonia as N	mg/L	0.0050	0.50	0.0080	0.016
Free Ammonia (unionised) as N by calculation*	mg/L	0.0070		<0.0070	<0.0070
Ammonium (NH4+) as N by calculation	mg/L	0.0070		0.0080	0.016
Nitrate as N	mg/L	0.0050		0.11	1.5
Nitrate as NO3 by calculation	mg/L	0.020	50	0.50	6.4
Nitrite as N	mg/L	0.0050		<0.0050	0.25
Nitrite as NO2 by calculation	mg/L	0.020	3.0	<0.020	0.81
NOx as N	mg/L	0.0050		0.11	1.7
TKN as N by calculation	mg/L	0.10		0.25	1.6
Organic Nitrogen by calc.	mg/L	0.10		0.24	1.5
Total Nitrogen	mg/L	0.10		0.36	3.3
Phosphate as P	mg/L	0.0050		<0.0050	0.0098
Reactive Silica*	mg/L	0.10		4.1	4.7

Your Reference: Water Analysis

Inorganics - Common Wastewater Parameters (Water)

Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02
Your Reference			Harvey DAM	SBR DECANT
Date Sampled			04/09/2023	04/09/2023
BOD	mg/L	5.0	<5.0	21
COD	mg O2/L	20	<20	31

Your Reference: Water Analysis

Inorganics - Cyanide Species and Similar (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Total Cyanide	mg/L	0.0040	0.080	<0.0040	<0.0040

Your Reference: Water Analysis

Microbiological Suite (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Thermotolerant Coliforms	cfu/100mL	1	1	8	> 150
E.coli	cfu/100mL	1	1	8	24

Your Reference: Water Analysis

Amoebae (Water)

Envirolab ID	Units	PQL	ADWG	PEI0228-01	PEI0228-02
Your Reference			Health	Harvey DAM	SBR DECANT
Date Sampled			Value	04/09/2023	04/09/2023
Thermophilic Amoebae	per 250mL	1.0		Not Detected	Not Detected
Thermophilic Naegleria	per 250mL	1.0	1.0	Not Detected	Not Detected

Subcontracted Radiological - Certificate: ME338866 - Analysed By SGS Environment Services (VIC) (Water)

Envirolab ID	Units	PQL	PEI0228-01	PEI0228-02	
Your Reference			Harvey DAM	SBR DECANT	
Date Sampled			04/09/2023	04/09/2023	
Gross alpha	Bq/L		0.016	0.081	
Gross beta	Bq/L		0.044	0.078	

Your Reference: Water Analysis

Result Comments

Identifier	Description
[2]	Surrogate recovery was low due to sample(s) emulsifying during liquid liquid extraction.

Your Reference: Water Analysis

Method Summary

Method ID	Methodology Summary
Calc	Calculation
Calc - SAR	Determination of SAR from cations concentration.
Calc - TKN	TKN determined by calculation (Total Nitrogen - NOx).
INORG-001	pH - Measured using pH meter and electrode based on APHA latest edition, Method 4500-H+. Please note that the results for water analyses are indicative only, as analysis can be completed outside of the APHA recommended holding times. Solids are reported from a 1:5 water extract unless otherwise specified. Alternatively, pH is determined in a 1:5 extract using 0.01M calcium chloride or a solid is extracted at a ratio of 1:2.5 (AS1289.4.3.1), pH is measured in the extract.
INORG-006	Alkalinity - determined titrimetrically based on APHA latest edition 2320-B. Solids reported from a 1:5 water extract unless otherwise specified. Total Carbon Dioxide - determined by calculation in accordance with APHA latest edition,4500-CO2 D.
INORG-014	Cyanide - free, total, weak acid dissociable by segmented flow analyser (in line dialysis with colourimetric finish). Solids/Filters and sorbents are extracted in a caustic media prior to analysis. Impingers are pH adjusted as required prior to analysis. Cyanides amenable to Chlorination - samples are analysed untreated and treated with hypochlorite to assess the potential for chlorination of cyanide forms.
INORG-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at $180\pm10^{\circ}$ C. NOTE: Where the EC of the sample is $<100\mu$ S/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation: TDS = EC*0.6
INORG-019	Suspended Solids - determined gravimetrically by filtration of the sample. The solids are dried at $104\pm5^{\circ}\text{C}$
INORG-022	Turbidity - measured nephelometrically using a turbidimeter, in accordance with APHA latest edition, 2130-B.
INORG-026	Fluoride determined by ion selective electrode (ISE) based on APHA latest edition, 4500-F-C. Solids are reported from a 1:5 water extract unless otherwise specified.
INORG-028	Measured by visual comparison and/or spectrophotometrically.
INORG-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within $+/-15\%$ i.e. total anions = total cations $+/-15\%$.
INORG-051	Determined titrimetrically. Note, the Sulphide is termed as Total Sulphide given any Sulphide contained in any sediment present is also included in the determination.
INORG-055	Nitrate/Nitrite/NOx/TKN - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils/solids are analysed following a water extraction.
INORG-057	Ammonia - determined colourimetrically. Water samples are filtered on receipt prior to analysis. Soils and OHS media are analysed following a water extraction. Alternatively, Ammonia can be extracted from soil using 1M KCI.
INORG-060	Phosphate - determined colourimetrically using APHA latest edition 4500 P E. Water samples are filtered on receipt prior to analysis. Soils are analysed from a water extract.
INORG-067	Samples are digested in acid with a known excess of potassium dichromate then the colour change is determined by discrete analyser or UV-VIS in accordance with APHA latest edition 5220 D.
INORG-079	Carbon forms (inorganic, organic, total) determined using a TOC/NDIR analyser via combustion. Dissolved aqueous\forms require filtering prior to determination.
INORG-081	Anions determined by Ion Chromatography. Waters samples are filtered on receipt prior to analysis. Solids are analysed from a water extract. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
INORG-086	Calculation of Langelier Saturation Index, Ryznar Stability Index - this calculation includes client supplied temperature, otherwise a water temperature of 20°C is assumed
INORG-091	BOD and/or cBOD - Analysed in accordance with APHA latest edition 5210 D.
INORG-112	Dissolved Oxygen determined using a membrane electrode. Note this analysis should ideally be carried out immediately after sampling.
INORG-120	Reactive silica by colourimetric molybdate method. Water samples are filtered on receipt prior to analysis.
INORG-127	Total Nitrogen by high temperature catalytic combustion with chemiluminescence detection. Organic Carbon forms (inorganic, organic, total) determined using a TOC/NDIR analyser via combustion. Dissolved forms require filtering prior to determination.
METALS-020	Determination of various metals by ICP-OES.
METALS-021	Determination of Mercury by Cold Vapour AAS.

Your Reference: Water Analysis

Method Summary

Method ID	Methodology Summary
METALS-022	Determination of various metals by ICP-MS. Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
MICRO-001B	E. coli/Thermotolerant coliforms: Microbial Water Analysis - in accordance with MICRO-001 (AS4276.5-latest edition). Recommended maximums based on NHMRC Australian Drinking Water Guidelines. Please note that results for this test derived from counts outside of the range 10-100 are considered approximate as per AS4276.1.
MICRO-003	Microbial Water Analysis - Free Living Protozoa
ORG-022	Determination of semi-volatile organic compounds (SVOCs) by GC-MS. Water samples are extracted by LLE and soils using DCM/Acetone/Methanol.
ORG-022_EDTA_NT A	EDTA and NTA determined by derivatisation and analysis by GC-MS
ORG-023	Determination of volatile organic compounds (VOCs) by P&T-GC-MS. Water samples are analysed directly by purge and trap GC-MS. Soils are extracted with Methanol, diluted and analysed by purge and trap GC-MS.
ORG-025	Determination of semi-volatile organic compounds (SVOCs) by GC-MS-MS. Water samples are extracted by LLE and soils/solids using DCM/Acetone/Methanol.
ORG-025_W	Determination of semi-volatile organic compounds (SVOCs) by GC-MS-MS. Water samples are extracted by LLE.
ORG-029	Soil/solid and sorbent samples are extracted with basified Methanol. Waters and soil/sorbent extracts are directly injected and/or concentrated/extracted using SPE. TCLP/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3. Analysis is undertaken with LC-MSMS. PFAS results include the sum of branched and linear isomers where applicable. Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compounds. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.
ORG-029_ACRYL	Acrylamide in liquids (water/leachate) determined by direct injection by LC/MS/MS.
ORG-029_MPC	Waters are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MSMS.
ORG-029_SVOC_VO C_LCMSMS SUB-027_GAB1	Water samples are run directly, soils are extracted using an aqueous buffer and plant material using solvent extraction/cleanup. Further cleanup maybe necessary. Analysis using LC-MSMS. Subcontracted to SGS - Accreditation number 2562

Your Reference: Water Analysis

Result Definitions

Identifier	Description
NR	Not reported
NEPM	National Environment Protection Measure
NS	Not specified
LCS	Laboratory Control Sample
RPD	Relative Percent Difference
>	Greater than
<	Less than
PQL	Practical Quantitation Limit
INS	Insufficient sample for this test
NA	Test not required
NT	Not tested
DOL	Samples rejected due to particulate overload (air filters only)
RFD	Samples rejected due to filter damage (air filters only)
RUD	Samples rejected due to uneven deposition (air filters only)
##	Indicates a laboratory acceptance criteria outlier, for further details, see Result Comments and/or QC Comments

Quality Control Definitions

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, and is determined by processing solvents and reagents in exactly the same manner as for samples.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

Duplicate

This is the complete duplicate analysis of a sample from the process batch. The sample selected should be one where the analyte concentration is easily measurable.

Your Reference: Water Analysis

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis.

General Acceptance Criteria (GAC) - Analyte specific criteria applies for some analytes and is reflected in QC recovery tables.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QAQC tables for details (available on request); <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was typically insufficient in order to satisfy laboratory QA/QC protocols.

Miscellaneous Information

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. We have taken the sampling date as being the date received at the laboratory.

Two significant figures are reported for the majority of tests and with a high degree of confidence, for results <10*PQL, the second significant figure may be in doubt i.e. has a relatively high degree of uncertainty and is provided for information only.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS where sediment/solids are included by default.

Urine Analysis - The BEI values listed are taken from the 2022 edition of TLVs and BEIs Threshold Limits by ACGIH.

Air volume measurements are not covered by Envirolab's NATA accreditation.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from the latest "Australian Drinking Water Guidelines", published by NHMRC. No guideline values have been set for Total Coliforms in drinking water. Increased concentrations should be investigated. Total Coliforms are not considered useful as indicators of the presence of faecal contamination.

Where we have provided guideline values eg. ADWG Health Value, it is the responsibility of the reader to decide if the water is fit for consumption. Please note that the tests we have conducted are just a selection of common tests to give you a general idea of drinking water quality. There are many other tests included in the ADWG that we have not tested for.

Your Reference: Water Analysis

Client Details

ClientHarvey WaterYour ReferenceWater AnalysisDate Issued20/09/2023

Recommended Holding Time Compliance

Recommended holding time exceedances exist - See detailed list below

Quality Control and QC Frequency

QC Type	Compliant	Details
Blank	Yes	No Outliers
LCS	Yes	No Outliers
Duplicates	No	Duplicate Outliers Exist - See detailed list below
Matrix Spike	No	Matrix Spike Outliers Exist - See detailed list below
Surrogates / Extracted Internal Standards	No	Surrogates / Extracted ISTD Outliers Exist - See detailed list below
QC Frequency	No	QC Frequency Outliers Exist - See detailed list below

Surrogates/Extracted Internal Standards, Duplicates and/or Matrix Spikes are not always relevant/applicable to certain analyses and matrices. Therefore, said QC measures are deemed compliant in these situations by default. See Laboratory Acceptance Criteria for more information

Your Reference: Revision: R-00 Water Analysis

Certificate of Analysis Generated: 20/09/2023 15:36:57

Recommended Holding Time Compliance

Analysis	Sample Number(s)	Date Sampled	Date Extracted	Date Analysed	Compliant
OCP (LL) Water	1-2	04/09/2023	07/09/2023	08/09/2023	Yes
OPP LL Water	1-2	04/09/2023	06/09/2023	08/09/2023	Yes
Phthalates incl. DEHA Water	1-2	04/09/2023	06/09/2023	07/09/2023	Yes
SCSG Banned Pesticides Water	1-2	04/09/2023	07/09/2023	08/09/2023	Yes
SCSG Organic Compounds:Industrial Hydrocarbons Water	1-2	04/09/2023	06/09/2023	07/09/2023	Yes
	1-2	04/09/2023	07/09/2023	08/09/2023	Yes
Amitrole Water	1-2	04/09/2023	07/09/2023	07/09/2023	Yes
SCSG Pesticides Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
	1-2	04/09/2023	07/09/2023	08/09/2023	Yes
Acrylamide Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
SCSG Treatment Organics Water	1-2	04/09/2023	06/09/2023	07/09/2023	Yes
Total Phosphorus Water	1-2	04/09/2023	04/09/2023	06/09/2023	Yes
Total Metals (LL) Water	1-2	04/09/2023	05/09/2023	07/09/2023	Yes
Dissolved Metals Water	1-2	04/09/2023	05/09/2023	06/09/2023	Yes
Dissolved Metals (LL) Water	1-2	04/09/2023	05/09/2023	07/09/2023	Yes
Dissolved Metals (LL)-Hg Water	1-2	04/09/2023	05/09/2023	06/09/2023	Yes
SAR Water	1-2	04/09/2023	05/09/2023	08/09/2023	Yes
Colour-True Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Dissolved O2 Water	1-2	04/09/2023	05/09/2023	05/09/2023	Yes
pH Water	1-2	04/09/2023	06/09/2023	06/09/2023	No
TDS Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
TSS Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Turbidity Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Alkalinity Suite Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Chloride Water	1	04/09/2023	05/09/2023	06/09/2023	Yes
	2	04/09/2023	05/09/2023	07/09/2023	Yes
Dissolved Cations Water	1-2	04/09/2023	05/09/2023	06/09/2023	Yes
Ion Balance Water	1-2	04/09/2023	05/09/2023	08/09/2023	Yes
Langelier Saturation Index (LSI) Water	1-2	04/09/2023	05/09/2023	08/09/2023	Yes
Sulfate Water	1	04/09/2023	05/09/2023	06/09/2023	Yes
	2	04/09/2023	05/09/2023	07/09/2023	Yes
Bromide Water	1	04/09/2023	05/09/2023	06/09/2023	Yes
	2	04/09/2023	05/09/2023	07/09/2023	Yes
Fluoride Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Iodide Water	1	04/09/2023	05/09/2023	06/09/2023	Yes
	2	04/09/2023	05/09/2023	07/09/2023	Yes
Sulfide Water	1-2	04/09/2023	07/09/2023	08/09/2023	Yes

Your Reference:

Water Analysis

Recommended Holding Time Compliance

Analysis	Sample Number(s)	Date Sampled	Date Extracted	Date Analysed	Compliant
Dissolved Organic Carbon Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Total Organic Carbon Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Nitrogen - Ammonia Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Nitrogen - Nitrate Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Nitrogen - Nitrite Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Nitrogen - NOx Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Nitrogen - Total N Water	1-2	04/09/2023	05/09/2023	06/09/2023	Yes
Phosphate as P Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Reactive Silica Water	1-2	04/09/2023	08/09/2023	08/09/2023	Yes
TKN as N calc Water	1-2	04/09/2023	05/09/2023	08/09/2023	Yes
BOD Water	1-2	04/09/2023	06/09/2023	11/09/2023	Yes
COD Water	1-2	04/09/2023	06/09/2023	06/09/2023	Yes
Cyanide - Total Water	1-2	04/09/2023	05/09/2023	06/09/2023	Yes
E. coli & T.T.coli Water	1-2	04/09/2023	05/09/2023	05/09/2023	Yes
Thermophilic Amoebae Water	1-2	04/09/2023	05/09/2023	05/09/2023	Yes
Gross alpha & beta Water	1-2	04/09/2023	19/09/2023	19/09/2023	Yes

Outliers: Duplicates

METALS-022 | Dissolved Low Level Metals (Water) | Batch BEI0447

Sample ID	Duplicate ID	Analyte	% Limits	RPD
BEI0447-DUP1#	DUP1	Strontium	20.00	200[3]

Outliers: Matrix Spike

METALS-020 | Dissolved Metals (Water) | Batch BEI0455

Sample ID	Analyte	% Limits	% Recovery
PEI0228-02	Sulfur	70 - 130	##[1]

METALS-020 | Inorganics - Ionic Balance and Indexes (Water) | Batch BEI0455

Sample ID	Analyte	% Limits	% Recovery
PEI0228-02	Sodium	70 - 130	##[1]

Your Reference: Revision: R-00 Water Analysis

Certificate of Analysis Generated: 20/09/2023 15:36:57

Outliers: Surrogate / Extracted Internal Standards

ORG-022 | Phthalates (Matrix) | Batch BEI0518

Sample ID	Analyte	% Limits	% Recovery
PEI0228-01	p-Terphenyl-D14	60 - 140	## [2]

Your Reference: Water Analysis

Outliers: QC Frequency

Analysis	QC Type	Expected	Reported
Cyanide - Total	Duplicate	2	1

INORG-051 | Inorganics - Miscellaneous and Common Anions (Water) | Batch BEI0651

Analysis	QC Type	Expected	Reported
Sulfide	Duplicate	2	0

INORG-091 | Inorganics - Common Wastewater Parameters (Water) | Batch BEI0714

Analysis	QC Type	Expected	Reported
BOD	Duplicate	1	0

INORG-112 | Inorganics - Physical Parameters (Water) | Batch BEI0365

Analysis	QC Type	Expected	Reported
Dissolved O2	Duplicate	1	0

ORG-022|Phthalates (Water)| Batch BEI0518

Analysis	QC Type	Expected	Reported
Phthalates incl. DEHA	Matrix Spike	1	0

ORG-022|SCSG Pesticides (Water)| Batch BEI0697

Analysis	QC Type	Expected	Reported
SCSG Pesticides	Duplicate	1	0
	Matrix Spike	1	0

ORG-023 | SCSG Organic Compounds: Industrial Hydrocarbons (Water) | Batch BEI0596

Analysis	QC Type	Expected	Reported
SCSG Organic Compounds:Industrial I	Duplicate	1	0
	Matrix Spike	1	0

ORG-023 | SCSG Organic Compounds: Industrial Hydrocarbons (Water) | Batch BEI0598

Analysis	QC Type	Expected	Reported
	Duplicate	1	0
	Matrix Spike	1	0
SCSG Treatment Organics	Duplicate	1	0
	Matrix Spike	1	0

Your Reference: Revision: R-00 Water Analysis

Certificate of Analysis Generated: 20/09/2023 15:36:57

ORG-025|Organophosphorus Pesticides - Low Level (Water)| Batch BEI0553

Analysis	QC Type	Expected	Reported
OPP LL	Duplicate	1	0
	Matrix Spike	1	0

Your Reference: Revision: R-00

Water Analysis

Certificate of Analysis Generated: 20/09/2023 15:36:57

Quality Control PEI0228

ORG-025 | Organochlorine Pesticides - Low Level (Water) | Batch BEI0698

Analyte	Units	PQL	Blank	DUP1 BEI0698-DUP1# Samp QC RPD %	LCS %	Spike % BEI0698-MS1#
alpha-BHC	μg/L	0.050	<0.050	<0.050 <0.050 [NA]	78.6	97.8
Hexachlorobenzene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
beta-BHC	μg/L	0.050	<0.050	<0.050 <0.050 [NA]	97.4	100
gamma-BHC	μg/L	0.050	<0.050	<0.050 <0.050 [NA]	[NA]	[NA]
delta-BHC	μg/L	0.050	<0.050	<0.050 <0.050 [NA]	[NA]	[NA]
Heptachlor	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	101	106
Aldrin	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	105	102
Heptachlor epoxide	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	94.8	105
trans-Chlordane	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
cis-Chlordane	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
Endosulfan I	μg/L	0.020	<0.020	<0.020 <0.020 [NA]	[NA]	[NA]
4,4'-DDE	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	97.3	110
Dieldrin	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	90.4	107
Endrin	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	95.0	112
4,4'-DDD	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	97.9	103
Endosulfan II	μg/L	0.020	<0.020	<0.020 <0.020 [NA]	[NA]	[NA]
4,4'-DDT	μg/L	0.0060	<0.0060	<0.0060 <0.0060 [NA]	[NA]	[NA]
Endosulfan sulfate	μg/L	0.020	<0.020	<0.020 <0.020 [NA]	96.1	106
Endrin ketone	μg/L	0.050	<0.050	<0.050 <0.050 [NA]	[NA]	[NA]
Methoxychlor	μg/L	0.020	<0.020	<0.020 <0.020 [NA]	[NA]	[NA]
Mirex	μg/L	0.020	<0.020	<0.020 <0.020 [NA]	[NA]	[NA]
Surrogate 2-Chlorophenol-D4	%		85.0	93.0 87.9	90.5	98.4

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-025 | Organophosphorus Pesticides - Low Level (Water) | Batch BEI0553

				LCS %
Analyte	Units	PQL	Blank	
Dichlorvos	μg/L	0.050	<0.050	[NA]
Dimethoate	μg/L	0.10	<0.10	[NA]
Diazinon	μg/L	0.010	<0.010	[NA]
Chlorpyrifos-methyl	μg/L	0.050	<0.050	98.5
Parathion-methyl	μg/L	0.050	<0.050	[NA]
Ronnel	μg/L	0.050	<0.050	[NA]
Fenitrothion	μg/L	0.050	<0.050	97.9
Malathion	μg/L	0.050	<0.050	[NA]
Chlorpyrifos	μg/L	0.0090	<0.0090	105
Parathion	μg/L	0.0040	<0.0040	[NA]
Bromophos-ethyl	μg/L	0.050	<0.050	[NA]
Ethion	μg/L	0.050	<0.050	105
Coumaphos	μg/L	0.050	<0.050	[NA]
Disulfoton	μg/L	0.050	<0.050	[NA]
Fenamiphos	μg/L	0.050	<0.050	[NA]
Fenthion	μg/L	0.050	<0.050	[NA]
Methidathion	μg/L	0.050	<0.050	[NA]
Mevinphos	μg/L	0.050	<0.050	[NA]
Phorate	μg/L	0.050	<0.050	[NA]
Phosalone	μg/L	0.050	<0.050	[NA]
Azinphos-methyl	μg/L	0.020	<0.020	[NA]
Surrogate 2-Chlorophenol-D4	%		102	97.4

Your Reference: Water Analysis

Quality Control PEI0228

ORG-022|Phthalates (Water) | Batch BEI0518

				DUP1	LCS %
Analyte	Units	PQL	Blank	BEI0518-DUP1#	
				Samp QC RPD %	
Dimethyl phthalate	μg/L	10	<10	<10 <10 [NA]	[NA]
Diethyl phthalate	μg/L	10	<10	<10 <10 [NA]	108
Di-n-butyl phthalate	μg/L	50	<50	<50 <50 [NA]	103
Butyl benzyl phthalate	μg/L	10	<10	<10 <10 [NA]	[NA]
Di-n-octyl phthalate	μg/L	10	<10	<10 <10 [NA]	[NA]
Di(2-ethylhexyl) adipate (DEHA)	μg/L	50	<50	<50 <50 [NA]	[NA]
Bis(2-ethylhexyl) phthalate (DEHP)	μg/L	50	<50	<50 <50 [NA]	[NA]
Surrogate p-Terphenyl-D14	%		93.4	83.7 102	101

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-022 | SCSG Banned Pesticides (Water) | Batch BEI0698

Analyte	Units	PQL	Blank	DUP1 BEI0698-DUP1# Samp QC RPD %	LCS %	Spike % BEI0698-MS1#
Hexachlorobenzene	mg/L	0.00050	<0.00050	<0.00050 <0.00050 [NA]	[NA]	[NA]
gamma-BHC	mg/L	0.000050	<0.000050	<0.000050 <0.000050 [N A]	[NA]	[NA]
Aldrin	mg/L	0.00001		<0.000010 <0.000010 [N A]	105	102
Chlordane	mg/L	0.000010	<0.000010	<0.000010 <0.000010 [N A]	[NA]	[NA]
Dieldrin	mg/L	0.00001		<0.000010 <0.000010 [N A]	90.4	107
Aldrin+Dieldrin	mg/L	0.000020	<0.000020	<0.000020 <0.000020 [N A]	[NA]	[NA]
DDT	mg/L	0.000060	<0.000060	<0.000060 <0.000060 [N A]	[NA]	[NA]

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-023 | SCSG Organic Compounds: Industrial Hydrocarbons (Water) | Batch BEI0596

Analyte	Units	PQL	Blank	LCS %
Epichlorohydrin	mg/L	0.00025	<0.00025	83.7

Your Reference: Water Analysis

ORG-023 | SCSG Organic Compounds: Industrial Hydrocarbons (Water) | Batch BEI0598

				LCS %
Analyte	Units	PQL	Blank	
Vinyl chloride	mg/L	0.00010	<0.00010	[NA]
1,1-Dichloroethene	mg/L	0.0010	<0.0010	[NA]
Methylene chloride	mg/L	0.0040	<0.0040	[NA]
1,2-dichloroethene	mg/L	0.0020	<0.0020	[NA]
1,1-Dichloroethane	mg/L	0.00050	<0.00050	99.9
Benzene	mg/L	0.00020	<0.00020	101
1,2-Dichloroethane	mg/L	0.00050	<0.00050	89.9
Trichloroethene	mg/L	0.0010	<0.0010	97.1
Toluene	mg/L	0.0010	<0.0010	101
Tetrachloroethene	mg/L	0.0010	<0.0010	105
Chlorobenzene	mg/L	0.0010	<0.0010	[NA]
Ethylbenzene	mg/L	0.0010	<0.0010	106
Total Xylene	mg/L	0.0030	<0.0030	[NA]
Styrene	mg/L	0.0010	<0.0010	[NA]
1,3-Dichlorobenzene	mg/L	0.0010	<0.0010	[NA]
1,4-Dichlorobenzene	mg/L	0.00020	<0.00020	96.2
1,2-Dichlorobenzene	mg/L	0.00050	<0.00050	[NA]
Hexachlorobutadiene	mg/L	0.00030	<0.00030	[NA]
Trichlorobenzenes (Total)	mg/L	0.0010	<0.0010	[NA]

ORG-022_EDTA_NTA | SCSG Organic Compounds: Industrial Hydrocarbons (Water) | Batch BEI0684

Analyte	Units	PQL	Blank	DUP1 PEI0228-01 Samp QC RPD %	LCS %	Spike % PEI0228-02
EDTA	mg/L	0.10	<0.10	<0.10 <0.10 [NA]	83.1	119
NTA	mg/L	0.020	<0.020	<0.020 <0.020 [NA]	101	109

ORG-025_W|SCSG Organic Compounds: Industrial Hydrocarbons (Water) | Batch BEI0698

Analyte	Units	PQL	Blank	DUP1 BEI0698-DUP1# Samp QC RPD %	LCS %	Spike % BEI0698-MS1#
Benzo(a)pyrene	mg/L	0.000005	<0.000005	<0.000005 <0.000005 [N A]	90.7	95.4

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-029_SVOC_VOC_LCMSMS | SCSG Pesticides (Water) | Batch BEI0575

Amaluta	Huita DC			DUP1	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0575-DUP1# Samp QC RPD %		PEI0228-01
Diuron	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA]	110	107

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-029_MPC | SCSG Pesticides (Water) | Batch BEI0695

Analyte	Units	PQL	Blank	DUP1 BEI0695-DUP1# Samp QC RPD %	LCS %	Spike % PEI0228-01
Amitrole	mg/L	0.00090	<0.00090	<0.00090 <0.00090 [NA]	109	114
Diquat	mg/L	0.00010	<0.00010		[NA]	[NA]
Paraquat	mg/L	0.00010	<0.00010		[NA]	[NA]

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

Your Reference: Water Analysis

ORG-022 | SCSG Pesticides (Water) | Batch BEI0697

				LCS %
Analyte	Units	PQL	Blank	
Clopyralid	mg/L	0.0010	<0.0010	[NA]
MCPA	mg/L	0.00050	<0.00050	79.9
2,4-D	mg/L	0.00010	<0.00010	74.4
Triclopyr	mg/L	0.0010	<0.0010	[NA]
Picloram	mg/L	0.0010	<0.0010	[NA]

ORG-025_W|SCSG Pesticides (Water) | Batch BEI0698

Analyte	Units	PQL	Blank	DUP1 BEI0698-DUP1# Samp QC RPD %	LCS %	Spike % BEI0698-MS1#
Simazine	mg/L	0.00010	<0.00010	<0.00010 <0.00010 [NA]	[NA]	[NA]
Atrazine	mg/L	0.00050	<0.00050	<0.00050 <0.00050 [NA]	88.5	106
Heptachlor	mg/L	0.000050	<0.000050	<0.000050 <0.000050 [N A]	101	106
Chlorfenvinphos	mg/L	0.00050	<0.00050	<0.00050 <0.00050 [NA]	[NA]	[NA]
Endosulfan	mg/L	0.00050	<0.00050	<0.00050 <0.00050 [NA]	[NA]	[NA]
Propiconazole A	mg/L	0.00010	<0.00010	<0.00010 <0.00010 [NA]	[NA]	[NA]
Hexazinone	mg/L	0.0020	<0.0020	<0.0020 <0.0020 [NA]	[NA]	[NA]
Temephos	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA]	[NA]	[NA]

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-029_ACRYL|SCSG Treatment Organics (Water) | Batch BEI0576

				DUP1	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0576-DUP1#		BEI0576-MS1#
·		-		Samp QC RPD %		
Acrylamide	mg/L	0.00010	<0.00010	0.00853 0.00897 5.11	103	109

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-023 | SCSG Treatment Organics (Water) | Batch BEI0598

Analyte	Units	PQL	Blank	LCS %
Carbon Tetrachloride	mg/L	0.00050	<0.00050	104
Surrogate Dibromofluoromethane	%		101	101

METALS-020 | Acid Extractable Metals (Water) | Batch BEI0258

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0258-DUP1#	PEI0228-01		BEI0258-MS1#
				Samp QC RPD %	Samp QC RPD %		
Phosphorus	mg/L	0.050	<0.050	<0.050 <0.050 [NA]	<0.050 <0.050 [NA]	99.8	98.0

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

METALS-022 | Acid Extractable Low Level Metals (Water) | Batch BEI0451

Analyte	Units	PQL	Blank	DUP1 PEI0228-01 Samp QC RPD %	LCS %	Spike % PEI0228-02
Antimony	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	119	117
Arsenic	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	112	110
Beryllium	μg/L	0.50	<0.50	<0.50 <0.50 [NA]	93.6	90.0
Lithium	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	97.2	94.6
Selenium	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	119	107
Silver	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	108	103

Your Reference: Water Analysis

METALS-020 | Dissolved Metals (Water) | Batch BEI0455

Analyte	Units	PQL	Blank	DUP1 PEI0228-01 Samp QC RPD %	DUP2 BEI0455-DUP2# Samp QC RPD %	LCS %	Spike % PEI0228-02
Silicon	mg/L	0.1		1.89 1.93 2.43	0.341 0.349 2.27	105	123
Sulfur	mg/L	0.50	<0.50	5.78 5.86 1.39	96.8 98.7 1.94	99.1	##[1]
Silica	mg/L	0.20	<0.20	4.03 4.13 2.43	0.730 0.746 2.27	[NA]	[NA]

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

METALS-021 | Dissolved Low Level Metals (Water) | Batch BEI0440

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0440-DUP1#	PEI0228-01		BEI0440-MS1#
·				Samp QC RPD %	Samp QC RPD %		
Mercury	μg/L	0.050	<0.050	<0.050 <0.050 [NA]	<0.050 <0.050 [NA]	102	94.4

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

METALS-022 | Dissolved Low Level Metals (Water) | Batch BEI0447

				DUP1 BEI0447-DUP1#	DUP2 PEI0228-01	LCS %	Spike % BEI0447-MS1#
Analyte	Units	PQL	Blank	Samp QC RPD %	Samp QC RPD %		BE10447-MS1#
Aluminium	μg/L	10	<10	<10 <10 [NA]	<10 <10 [NA]	96.0	97.1
Barium	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	15.6 15.6 0.0449	104	104
Boron	μg/L	20	<20	34.1 32.7 4.22	34.2 31.3 8.88	119	106
Cadmium	μg/L	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	110	111
Chromium	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	108	106
Cobalt	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	111	107
Copper	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	106	101
Gallium	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	102	98.7
Iron	μg/L	10	<10	<10 <10 [NA]	24.2 23.8 1.83	111	108
Lead	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	101	101
Manganese	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	101	95.7
Molybdenum	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	106	105
Nickel	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	107	104
Strontium	μg/L	1.0	<1.0	1.10 <1.0 200 [3]	52.9 52.1 1.61	99.1	94.8
Titanium	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	98.8	98.8
Uranium	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	97.7	97.5
Vanadium	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	110	106
Zinc	μg/L	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	108	103

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-112 | Inorganics - Physical Parameters (Water) | Batch BEI0365

Analyte	Units	PQL	Blank	LCS %
Dissolved Oxygen	mg/L	0.10	<0.10	[NA]

INORG-028 | Inorganics - Physical Parameters (Water) | Batch BEI0467

				DUP1	DUP2	LCS %	
Analyte	Units	PQL	Blank	BEI0467-DUP1#	BEI0467-DUP2#		
•		-		Samp QC RPD %	Samp QC RPD %		
Colour (True)	PCU	5.0	<5.0	<5.0 <5.0 [NA]	65.1 64.2 1.41	97.4	

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

Your Reference: Water Analysis
Revision: R-00 Certificate of Analysis Generated: 20/09/2023 15:36:57

INORG-001 | Inorganics - Physical Parameters (Water) | Batch BEI0476

				DUP1	DUP2	LCS %	
Analyte	Units	PQL	Blank	BEI0476-DUP1#	BEI0476-DUP2#		
				Samp QC RPD %	Samp QC RPD %		
pH	pH units		9.4	7.4 7.5 0.134	3.2 3.1 1.60	105	

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-018 | Inorganics - Physical Parameters (Water) | Batch BEI0507

Analyte	Units	PQL	Blank	DUP1 PEI0228-01 Samp QC RPD %	LCS %
Total Dissolved Solids	mg/L	5.0	<5.0	246 259 5.15	95.9

INORG-019 | Inorganics - Physical Parameters (Water) | Batch BEI0508

				DUP1	LCS %
Analyte	Units	PQL	Blank	PEI0228-01	
				Samp QC RPD %	
Total Suspended Solids	mg/L	5.0	<5.0	<5.0 <5.0 [NA]	94.0

INORG-022 | Inorganics - Physical Parameters (Water) | Batch BEI0601

				DUP1	DUP2	LCS %
Analyte	Units	PQL	Blank	BEI0601-DUP1#	BEI0601-DUP2#	
				Samp QC RPD %	Samp QC RPD %	
Turbidity	NTU	0.10	<0.10	0.180 0.190 5.41	0.220 0.200 9.52	97.0

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-081 | Inorganics - Ionic Balance and Indexes (Water) | Batch BEI0453

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0453-DUP1#	BEI0453-DUP2#		BEI0453-MS1#
		•		Samp QC RPD %	Samp QC RPD %		
Chloride	mg/L	1.0	<1.0	553 554 0.150	509 506 0.481	95.8	73.1
Sulfate	mg/L	1.0	<1.0	1460 1470 0.509	38.1 37.9 0.626	100	71.1

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

METALS-020 | Inorganics - Ionic Balance and Indexes (Water) | Batch BEI0455

Analyte	Units	PQL	Blank	DUP1 PEI0228-01 Samp QC RPD %	DUP2 BEI0455-DUP2# Samp QC RPD %	LCS %	Spike % PEI0228-02
Calcium	mg/L	0.50	<0.50	7.38 7.54 2.09	38.7 39.1 1.04	101	89.6
Magnesium	mg/L	0.50	<0.50	11.5 11.6 1.09	130 132 0.909	104	102
Potassium	mg/L	0.50	<0.50	2.00 1.92 4.04	40.2 41.0 1.99	102	97.4
Sodium	mg/L	0.50	<0.50	60.4 62.9 4.04	1110 1140 2.88	101	##[1]
Hardness as CaCO3	mg/L	3.0	<3.0	65.6 66.6 1.37	633 639 0.928	[NA]	[NA]

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-006 | Inorganics - Ionic Balance and Indexes (Water) | Batch BEI0476

				DUP1	DUP2	LCS %
Analyte	Units	PQL	Blank	BEI0476-DUP1#	BEI0476-DUP2#	
		-		Samp QC RPD %	Samp QC RPD %	
Bicarbonate Alkalinity as CaCO3	mg/L as CaCO3	5.0	<5.0	374 386 3.15	<5.0 <5.0 [NA]	[NA]
Carbonate Alkalinity as CaCO3	mg/L as CaCO3	5.0	<5.0	<5.0 <5.0 [NA]	<5.0 <5.0 [NA]	[NA]
Hydroxide OH- as CaCO3	mg/L as CaCO3	5.0	<5.0	<5.0 <5.0 [NA]	<5.0 <5.0 [NA]	[NA]
Total Alkalinity as CaCO3	mg/L as CaCO3	5.0	<5.0	374 386 3.15	<5.0 <5.0 [NA]	113

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

Your Reference: Water Analysis Certificate of Analysis Generated: 20/09/2023 15:36:57 Revision: R-00

INORG-081 | Inorganics - Miscellaneous and Common Anions (Water) | Batch BEI0453

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0453-DUP1#	BEI0453-DUP2#		BEI0453-MS1#
-				Samp QC RPD %	Samp QC RPD %		
Bromide	mg/L	0.50	<0.50	2.51 2.64 5.03	1.57 1.55 1.28	105	127
Iodide	mg/L	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	101	96.0

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-026 | Inorganics - Miscellaneous and Common Anions (Water) | Batch BEI0471

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0471-DUP1#	BEI0471-DUP2#		BEI0471-MS1#
1				Samp QC RPD %	Samp QC RPD %		
Fluoride	mg/L	0.10	<0.10	<0.10 <0.10 [NA]	<0.10 <0.10 [NA]	96.8	101

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-051 | Inorganics - Miscellaneous and Common Anions (Water) | Batch BEI0651

Analyte	Units	PQL	Blank	LCS %
Sulfide	mg/L	0.50	<0.50	82.9

INORG-079 | Inorganics - Organic Carbons (Water) | Batch BEI0516

				DUP1	LCS %	Spike %
Analyte	Units	PQL	Blank	PEI0228-01		PEI0228-02
				Samp QC RPD %		
Dissolved Organic Carbon	mg/L	1.0	<1.0	3.95 3.78 4.30	97.2	104

INORG-079 | Inorganics - Organic Carbons (Water) | Batch BEI0517

				DUP1	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0517-DUP1#		BEI0517-MS1#
				Samp QC RPD %		
Total Organic Carbon	mg/L	1.0	<1.0	11.7 11.5 1.86	98.5	108

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-127 | Inorganics - Nutrients (Water) | Batch BEI0459

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0459-DUP1#	BEI0459-DUP2#		BEI0459-MS1#
				Samp QC RPD %	Samp QC RPD %		
Total Nitrogen	mg/L	0.10	<0.10	166 170 2.19	4.94 4.84 2.07	114	125

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-057 | Inorganics - Nutrients (Water) | Batch BEI0467

				DUP1	DUP2	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0467-DUP1# Samp QC RPD %	BEI0467-DUP2# Samp QC RPD %		BEI0467-MS1#
Ammonia as N	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA]	24.9 23.6 5.34	91.8	97.4
Nitrate as N	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA]	0.264 0.266 0.886	106	112
Nitrate as NO3 by calculation	mg/L	0.020	<0.020			[NA]	[NA]
Nitrite as N	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA]	0.138 0.136 1.79	94.5	92.0
Nitrite as NO2 by calculation	mg/L	0.020	<0.020			[NA]	[NA]
NOx as N	mg/L	0.0050	<0.0050	<0.0050 <0.0050 [NA]	0.402 0.402 0.0249	106	112
Phosphate as P	mg/L	0.0050	<0.0050	0.177 0.182 2.51	6.46 6.36 1.66	103	83.0

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-120 | Inorganics - Nutrients (Water) | Batch BEI0770

Analyte	Units	PQL	Blank	DUP1 PEI0228-01 Samp QC RPD %	LCS %	Spike % PEI0228-02
Reactive Silica	mg/L	0.10	<0.10	4.05 4.02 0.776	103	88.2

Your Reference:

Water Analysis

INORG-067 | Inorganics - Common Wastewater Parameters (Water) | Batch BEI0523

				DUP1	DUP2	LCS %
Analyte	Units	PQL	Blank	BEI0523-DUP1#	BEI0523-DUP2#	
-		_		Samp QC RPD %	Samp QC RPD %	
COD	mg O2/L	20	<20	68.0 68.0 0.00	463 462 0.216	107

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-091 | Inorganics - Common Wastewater Parameters (Water) | Batch BEI0714

Analyte	Units	PQL	Blank	LCS %
BOD	mg/L	5.0	<5.0	81.1

INORG-014 | Inorganics - Cyanide Species and Similar (Water) | Batch BEI0461

				DUP1	LCS %	Spike %
Analyte	Units	PQL	Blank	BEI0461-DUP1#		BEI0461-MS1#
·		•		Samp QC RPD %		
Total Cyanide	mg/L	0.0040	<0.0040	12.8 12.9 0.765	97.0	70.4

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

MICRO-001B | Microbiological Suite (Water) | Batch BEI0528

				DUP1	DUP2	LCS %
Analyte	Units	PQL	Blank	BEI0528-DUP1# Samp QC RPD %	BEI0528-DUP2# Samp QC RPD %	
Thermotolerant Coliforms	cfu/100mL	1	<1	<1 <1 [NA]	<1 <1 [NA]	[NA]
E.coli	cfu/100mL	1	<1	<1 <1 [NA]	<1 <1 [NA]	[NA]
				DUP3	DUP4	LCS %
Analyte	Units	PQL	Blank	BEI0528-DUP3#	BEI0528-DUP4#	
				Samp QC RPD %	Samp QC RPD %	
Thermotolerant Coliforms	cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]
E.coli	cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]
				DUP5	DUP6	LCS %
Analyte	Units	PQL	Blank	BEI0528-DUP5#	BEI0528-DUP6#	
•		•		Samp QC RPD %	Samp QC RPD %	
Thermotolerant Coliforms	cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]
E.coli	cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]
				DUP7	DUP8	LCS %
Analyte	Units	PQL	Blank	BEI0528-DUP7#	BEI0528-DUP8#	

				50.7	50.0		
Analyte	Units	PQL	Blank	BEI0528-DUP7#	BEI0528-DUP8#		
·				Samp QC RPD %	Samp QC RPD %		
Thermotolerant Coliforms	cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]	
E.coli	cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]	
				DUDO	DUDA	1.00.0/	

				DUP9	DUPA	LCS %
Analyte	Units	PQL	Blank	BEI0528-DUP9#	BEI0528-DUPA#	
				Samp QC RPD %	Samp QC RPD %	
Thermotolerant Coliforms	cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]
E.coli	cfu/100mL	1		<1 <1 [NA]	<1 <1 [NA]	[NA]

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

MICRO-003 | Amoebae (Water) | Batch BEI0527

Analysis		DO!	Bll.	LCS %
Analyte	Units	PQL	Blank	
Thermophilic Amoebae	per 250mL	1.0	Not Detected	[NA]
Thermophilic Naegleria	per 250mL	1.0	Not Detected	[NA]

Your Reference: Water Analysis

QC Comments

Identifier	Description
[1]	Spike recovery is not applicable due to the relatively high analyte background in the sample (>3* spike level). However, the LCS recovery is within acceptance criteria.
[3]	Duplicate %RPD may be flagged as an outlier to routine laboratory acceptance, however, where one or both results are <10*PQL, the RPD acceptance criteria increases exponentially.

Your Reference: Water Analysi

Envirolab Services (WA) Pty Ltd trading as MPL Laboratories ABN 53 140 099 207

16-18 Hayden Court Myaree WA 6154 ph +61 8 9317 2505 lab@mpl.com.au www.mpl.com.au

Certificate of Analysis PFD0586

Client Details

Client Harvey Water

Contact Cameron Norris

Address PO Box 468, HARVEY, WA, 6220

Sample Details

Your Reference Harvey Fresh HF

Number of Samples3 WaterDate Samples Received09/04/2024Date Instructions Received09/04/2024

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details

 Date Results Requested by
 23/04/2024

 Date of Issue
 22/04/2024

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with \ast .

Authorisation Details

Results Approved By Hien Luong, Organics Technician

Nick Salarmis, Assistant Operations Manager

Sean McAlary, Chemist

Travis Carey, Organics Supervisor

Laboratory Manager Michael Kubiak

Your Reference: Harvey Fresh HF

Samples in this Report

Envirolab ID	Sample ID	Matrix	Date Sampled	Date Received
PFD0586-01	Outlet	Water	08/04/2024	09/04/2024
PFD0586-02	Point 2	Water	08/04/2024	09/04/2024
PFD0586-03	B Ramp	Water	08/04/2024	09/04/2024

Your Reference: Harvey Fresh HF

Polycyclic Aromatic Hydrocarbons - Trace Level (Water)

Envirolab ID	Units	PQL	PFD0586-01	PFD0586-02	PFD0586-03
Your Reference			Outlet	Point 2	B Ramp
Date Sampled			08/04/2024	08/04/2024	08/04/2024
Naphthalene	μg/L	0.020	<0.020	<0.020	<0.020
Acenaphthylene	μg/L	0.010	<0.010	<0.010	<0.010
Acenaphthene	μg/L	0.010	<0.010	<0.010	<0.010
Fluorene	μg/L	0.010	<0.010	<0.010	<0.010
Phenanthrene	μg/L	0.010	<0.010	<0.010	<0.010
Anthracene	μg/L	0.010	<0.010	<0.010	<0.010
Fluoranthene	μg/L	0.010	<0.010	<0.010	<0.010
Pyrene	μg/L	0.010	<0.010	<0.010	<0.010
Benzo(a)anthracene	μg/L	0.010	<0.010	<0.010	<0.010
Chrysene	μg/L	0.010	<0.010	<0.010	<0.010
Benzo(b,j,k)fluoranthene	μg/L	0.020	<0.020	<0.020	<0.020
Benzo(a)pyrene	μg/L	0.010	<0.010	<0.010	<0.010
Indeno(1,2,3-c,d)pyrene	μg/L	0.010	<0.010	<0.010	<0.010
Dibenzo(a,h)anthracene	μg/L	0.010	<0.010	<0.010	<0.010
Benzo(g,h,i)perylene	μg/L	0.010	<0.010	<0.010	<0.010
Total +ve PAH	μg/L	0.010	<0.010	<0.010	<0.010
Surrogate p-Terphenyl-D14	%		80.5	92.1	94.9

Your Reference: Harvey Fresh HF

Polychlorinated Biphenyls - Trace Level (Water)

Envirolab ID	Units	PQL	PFD0586-01	PFD0586-02	PFD0586-03
Your Reference			Outlet	Point 2	B Ramp
Date Sampled			08/04/2024	08/04/2024	08/04/2024
PCB C28	μg/L	0.0010	<0.0010	<0.0010	<0.0010
PCB C52	μg/L	0.0010	<0.0010	<0.0010	<0.0010
PCB C101	μg/L	0.00050	<0.00050	<0.00050	<0.00050
PCB C118	μg/L	0.00050	<0.00050	<0.00050	<0.00050
PCB C138	μg/L	0.00050	<0.00050	<0.00050	<0.00050
PCB C153	μg/L	0.00050	<0.00050	<0.00050	<0.00050
PCB C180	μg/L	0.00050	<0.00050	<0.00050	<0.00050
Surrogate 2-Fluorobiphenyl	%		122	115	114

Your Reference: Harvey Fresh HF

Inorganics - Nutrients (Water) - Analysed By Envirolab Services Sydney

Envirolab ID	Units	PQL	PFD0586-01	PFD0586-02	PFD0586-03
Your Reference			Outlet	Point 2	B Ramp
Date Sampled			08/04/2024	08/04/2024	08/04/2024
Chlorophyll a	mg/m3	1.0	2.1	34	6.4

Your Reference: Harvey Fresh HF

PFAS Short List (Water) - Analysed By Envirolab Services Sydney

Envirolab ID	Units	PQL	PFD0586-01	PFD0586-02	PFD0586-03
Your Reference			Outlet	Point 2	B Ramp
Date Sampled			08/04/2024	08/04/2024	08/04/2024
Perfluorohexanesulfonic acid (PFHxS)	μg/L	0.010	<0.010	<0.010	<0.010
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.010	<0.010	<0.010	<0.010
Perfluorooctanoic acid (PFOA)	μg/L	0.010	<0.010	<0.010	<0.010
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	μg/L	0.010	<0.010	<0.010	<0.010
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.020	<0.020	<0.020	<0.020
Surrogate 13C8 PFOS	%		97.6	103	104
Surrogate 13C2 PFOA	%		91.8	100	106
Total +ve PFOA+PFOS	μg/L	0.010	<0.010	<0.010	<0.010
Total +ve PFAS	μg/L	0.010	<0.010	<0.010	<0.010
Total +ve PFHxS+PFOS	μg/L	0.010	<0.010	<0.010	<0.010
Extraction Internal Standard 1802 PFHxS	%		92.7	94.6	97.0
Extraction Internal Standard 13C4 PFOS	%		100	95.3	95.4
Extraction Internal Standard 13C4 PFOA	%		101	97.4	97.9
Extraction Internal Standard 13C2 6:2FTS	%		82.6	87.7	83.3
Extraction Internal Standard 13C2 8:2FTS	%		93.5	105	108

Your Reference: Harvey Fresh HF

Dioxins/Furans (Water)

 Envirolab ID:
 PFD0586-01
 Date Sampled:
 08/04/2024

 Client ID:
 Outlet

Analyte	PQL	Units	Result						
2,3,7,8-TCDD	5.00	pg/L	<5.0						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	1	0.0	2.5	5.0	1	0.0	2.5	5.0	107%
1,2,3,7,8-PeCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	1	0.0	10	20	0.5	0.0	5.0	10	117%
1,2,3,4,7,8-HxCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	118%
1,2,3,6,7,8-HxCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	113%
,2,3,7,8,9-HxCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	-
,2,3,4,6,7,8-HpCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.01	0.0	0.10	0.20	0.01	0.0	0.10	0.20	103%
OCDD	50.00	pg/L	<50						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.0003	0.0	0.0075	0.015	0.001	0.0	0.025	0.050	108%
2,3,7,8-TCDF	5.00	pg/L	<5.0						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.1	0.0	0.25	0.50	0.1	0.0	0.25	0.50	105%
1,2,3,7,8-PeCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.03	0.0	0.30	0.60	0.05	0.0	0.50	1.0	112%
2,3,4,7,8-PeCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.3	0.0	3.0	6.0	0.5	0.0	5.0	10	113%
,2,3,4,7,8-HxCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	111%
,2,3,6,7,8-HxCDF	20.00	pg/L	<20						
, , , , , , , , , , , , , , , , , , , ,	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	117%
,2,3,7,8,9-HxCDF	20.00	pg/L	<20						
, , , , , , , , , , , , , , , , , , , ,	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	104%
2,3,4,6,7,8-HxCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	121%
,2,3,4,6,7,8-HpCDF	20.00	pg/L	<20						
, ,-, ,-,-,-	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.01	0.0	0.10	0.20	0.01	0.0	0.10	0.20	107%
,2,3,4,7,8,9-HpCDF	20.00	pg/L	<20						
וטטקוו לנטנינו נפנבינ	WHO-TEF	ρg/∟ WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
	0.01	0.0	0.10	0.20	0.01	0.0	0.10	0.20	110%
OCDF	50.00		<50						
,CDI	WHO-TEF	pg/L WHO-TEQ1	×50 WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recover
		1202				4.		125	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Your Reference:

Harvey Fresh HF

Envirolab ID:	PFD0586-02			Date Sampled:	08/04/	2024			
Client ID:	Point 2								
Analyte	PQL	Units	Result						
2,3,7,8-TCDD	5.00	pg/L	<5.0						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	1	0.0	2.5	5.0	1	0.0	2.5	5.0	106%
1,2,3,7,8-PeCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	1	0.0	10	20	0.5	0.0	5.0	10	119%
1,2,3,4,7,8-HxCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	135%
,2,3,6,7,8-HxCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	109%
1,2,3,7,8,9-HxCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	-
1,2,3,4,6,7,8-HpCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.01	0.0	0.10	0.20	0.01	0.0	0.10	0.20	115%
OCDD	50.00	pg/L	<50						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.0003	0.0	0.0075	0.015	0.001	0.0	0.025	0.050	123%
2,3,7,8-TCDF	5.00	pg/L	<5.0						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	0.25	0.50	0.1	0.0	0.25	0.50	102%
1 2 2 7 0 DaCDE	20.00	ng/l	<20						
1,2,3,7,8-PeCDF	WHO-TEF	pg/L WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.03	0.0	0.30	0.60	0.05	0.0	0.50	1.0	115%
2.4.7.0 DaCDE									
2,3,4,7,8-PeCDF	20.00 WHO-TEF	pg/L WHO-TEQ1	<20 WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.3	0.0	3.0	6.0	0.5	0.0	5.0	10	116%
				0.0	0.5	0.0	3.0		11070
1,2,3,4,7,8-HxCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	139%
1,2,3,6,7,8-HxCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	128%
1,2,3,7,8,9-HxCDF	20.00	pg/L	<20						
1,2,3,7,8,9-HxCDF	20.00						I-TEQ2	I-TEQ3	Recovery
1,2,3,7,8,9-HxCDF	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1		_	
1,2,3,7,8,9-HxCDF				WHO-TEQ3 2.0	I-TEF 0.1	I-TEQ1 0.0	1.0	2.0	116%
	WHO-TEF	WHO-TEQ1	WHO-TEQ2					2.0	116%
	0.1 20.00 WHO-TEF	WHO-TEQ1 0.0 pg/L WHO-TEQ1	### WHO-TEQ2 1.0 <20 WHO-TEQ2	2.0 WHO-TEQ3	O.1	0.0 I-TEQ1	1.0	I-TEQ3	Recovery
	<i>WHO-TEF 0.1</i> 20.00	<i>WHO-TEQ1 0.0</i> pg/L	### WHO-TEQ2 1.0 <20	2.0	0.1	0.0	1.0		
2,3,4,6,7,8-HxCDF	0.1 20.00 WHO-TEF	WHO-TEQ1 0.0 pg/L WHO-TEQ1	### WHO-TEQ2 1.0 <20 WHO-TEQ2	2.0 WHO-TEQ3	O.1	0.0 I-TEQ1	1.0	I-TEQ3	Recovery
2,3,4,6,7,8-HxCDF	WHO-TEF 0.1 20.00 WHO-TEF 0.1	WHO-TEQ1 0.0 pg/L WHO-TEQ1 0.0	### WHO-TEQ2 1.0 <20 ###O-TEQ2 1.0	2.0 WHO-TEQ3	O.1	0.0 I-TEQ1	1.0	I-TEQ3	Recovery 134%
2,3,4,6,7,8-HxCDF	WHO-TEF 0.1 20.00 WHO-TEF 0.1 20.00	##O-TEQ1 0.0 pg/L ##O-TEQ1 0.0 pg/L	######################################	2.0 WHO-TEQ3 2.0	0.1 I-TEF 0.1	0.0 I-TEQ1 0.0	1.0 I-TEQ2 1.0	I-TEQ3 2.0	Recovery 134%
2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	WHO-TEF 0.1 20.00 WHO-TEF 0.1 20.00 WHO-TEF	WHO-TEQ1 0.0 pg/L WHO-TEQ1 0.0 pg/L WHO-TEQ1 0.0	######################################	2.0 WHO-TEQ3 2.0 WHO-TEQ3	0.1 I-TEF 0.1 I-TEF	0.0 I-TEQ1 0.0	1.0 I-TEQ2 1.0	I-TEQ3 2.0 I-TEQ3	Recovery 134% Recovery
2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	0.1 20.00 WHO-TEF 0.1 20.00 WHO-TEF 0.1 20.00 WHO-TEF 0.01	WHO-TEQ1 0.0 pg/L WHO-TEQ1 0.0 pg/L WHO-TEQ1	### WHO-TEQ2 1.0 <20 WHO-TEQ2 1.0 <20 WHO-TEQ2 0.10	2.0 WHO-TEQ3 2.0 WHO-TEQ3	0.1 I-TEF 0.1 I-TEF	0.0 I-TEQ1 0.0	1.0 I-TEQ2 1.0	I-TEQ3 2.0 I-TEQ3	Recovery 134% Recovery 122%
2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF	0.1 20.00 WHO-TEF 0.1 20.00 WHO-TEF 0.1 20.00 WHO-TEF 0.01 20.00	### ### ### ### ### ### ### ### ### ##	### WHO-TEQ2 1.0 <20 WHO-TEQ2 1.0 <20 WHO-TEQ2 0.10 <20	2.0 WHO-TEQ3 2.0 WHO-TEQ3 0.20	0.1 I-TEF 0.1 I-TEF 0.01	0.0 I-TEQ1 0.0 I-TEQ1 0.0	1.0 I-TEQ2 1.0 I-TEQ2 0.10	1-TEQ3 2.0 1-TEQ3 0.20	Recovery 134% Recovery 122%
2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	WHO-TEF 0.1 20.00 WHO-TEF 0.1 20.00 WHO-TEF 0.01 20.00 WHO-TEF 0.01	WHO-TEQ1 0.0 pg/L WHO-TEQ1 0.0 pg/L WHO-TEQ1 0.0 pg/L WHO-TEQ1 0.0 pg/L WHO-TEQ1	### WHO-TEQ2 1.0 <20 ### WHO-TEQ2 1.0 <20 ### WHO-TEQ2 0.10 <20 ### WHO-TEQ2 0.10 <10	2.0 WHO-TEQ3 2.0 WHO-TEQ3 0.20	0.1 I-TEF 0.1 I-TEF 0.01	0.0 I-TEQ1 0.0 I-TEQ1 0.0	1.0 I-TEQ2 1.0 I-TEQ2 0.10	I-TEQ3 2.0 I-TEQ3 0.20	Recovery 134% Recovery 122%
1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	### WHO-TEF ### 0.1 20.00 ### 0.1 20.00 ### 0.01 20.00 ### 0.01 20.00 ### 0.01 ### 0.00 ### 0.0	WHO-TEQ1 0.0 pg/L WHO-TEQ1 0.0 pg/L WHO-TEQ1 0.0 pg/L WHO-TEQ1 WHO-TEQ1	### WHO-TEQ2 1.0 <20 WHO-TEQ2 1.0 <20 WHO-TEQ2 0.10 <20 WHO-TEQ2	2.0 WHO-TEQ3 2.0 WHO-TEQ3 0.20	0.1 I-TEF 0.1 I-TEF 0.01	0.0 I-TEQ1 0.0 I-TEQ1 0.0	1.0 I-TEQ2 1.0 I-TEQ2 0.10	I-TEQ3 2.0 I-TEQ3 0.20	Recovery 134% Recovery 122%

Your Reference: Revision: R-00

Harvey Fresh HF Certificate of Analysis Generated: 22/04/2024 15:47

Envirolab ID:	PFD0586-03			Date Sampled:	08/04/	2024			
Client ID:	B Ramp								
Analyte	PQL	Units	Result						
2,3,7,8-TCDD	5.00	pg/L	<5.0						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	1	0.0	2.5	5.0	1	0.0	2.5	5.0	109%
1,2,3,7,8-PeCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	1	0.0	10	20	0.5	0.0	5.0	10	107%
,2,3,4,7,8-HxCDD	20.00	pg/L	<20						
1,2,5,1,7,611655	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	125%
1 2 2 6 7 0 11 000									
1,2,3,6,7,8-HxCDD	20.00	pg/L	<20	WINO TEO3	1.755	1.7501	I TC02	I TEO 2	Dagayan
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	116%
1,2,3,7,8,9-HxCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	-
1,2,3,4,6,7,8-HpCDD	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.01	0.0	0.10	0.20	0.01	0.0	0.10	0.20	108%
OCDD	50.00	pg/L	<50						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.0003	0.0	0.0075	0.015	0.001	0.0	0.025	0.050	114%
2,3,7,8-TCDF	5.00	pg/L	<5.0						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	0.25	0.50	0.1	0.0	0.25	0.50	105%
1 2 2 7 0 D-CDE									
1,2,3,7,8-PeCDF	20.00 WHO-TEF	pg/L	<20	WINO TEO3	1 755	1.7501	I TEO 2	I TEO 2	Dagayan
	0.03	WHO-TEQ1 0.0	WHO-TEQ2 0.30	WHO-TEQ3 0.60	<i>I-TEF</i> 0.05	I-TEQ1 0.0	I-TEQ2 0.50	I-TEQ3 1.0	Recovery 113%
	0.03	0.0	0.30	0.00	0.03	0.0	0.30	1.0	115%
2,3,4,7,8-PeCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.3	0.0	3.0	6.0	0.5	0.0	5.0	10	115%
1,2,3,4,7,8-HxCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	118%
1,2,3,6,7,8-HxCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	119%
,2,3,7,8,9-HxCDF	20.00	pg/L	<20						
1,2,3,7,10,3	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	108%
34670 4	20.00								
2,3,4,6,7,8-HxCDF	20.00 WHO-TEF	pg/L WHO-TEQ1	<20 WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.1	0.0	1.0	2.0	0.1	0.0	1.0	2.0	115%
				2.0	0.1	0.0	1.0	2.0	11370
,2,3,4,6,7,8-HpCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.01	0.0	0.10	0.20	0.01	0.0	0.10	0.20	112%
,2,3,4,7,8,9-HpCDF	20.00	pg/L	<20						
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery
	0.01	0.0	0.10	0.20	0.01	0.0	0.10	0.20	116%
OCDF	50.00	pg/L	<50						
OCDF				WWO TEO2	<i>T. T.C.C.</i>	, TF01	I TEO2	I TEO 2	Do on your
	WHO-TEF	WHO-TEQ1	WHO-TEQ2	WHO-TEQ3	I-TEF	I-TEQ1	I-TEQ2	I-TEQ3	Recovery

Your Reference: Revision: R-00 Harvey Fresh HF

Method Summary

Method ID	Methodology Summary
INORG-119	Chlorophyll A based on APHA 10200 H latest edition.
ORG-025	Determination of semi-volatile organic compounds (SVOCs) by GC-MS-MS. Water samples are extracted by LLE and soils/solids using DCM/Acetone/Methanol.
ORG-025_DIOXIN	Water samples are extracted with DCM and concentrated. The extract is analysed by GC-MSMS for Dioxin and Furans. Soils and Sorbents are solvent extracted, followed by clean-up and GC-MSMS analysis. 1. I -TEQ(zero) and WHO-TEQ(zero) calculated where analyte components that are <pql *="" -="" -teq(0.5)="" 0.5="" 13c12="" 2.="" 3.="" <pql="" <pql,="" added="" all="" an="" analyte="" and="" appropriate.<="" are="" arithmetic="" as="" associated="" be="" being="" by="" calculate="" calculated="" calculation="" calculation.="" component="" components="" compound="" considered="" consistency="" does="" down="" due="" efficiency.="" equal="" equivalence="" equivalency="" exactly="" extraction="" factor="" figures="" for="" formula="" given="" health="" i="" i-tef="" i-teq="" i-teq(pql)="" in="" international="" is="" isotopically="" labelled="" laboratory="" may="" measure="" not="" number="" of="" or="" organisation="" out="" pql="" pqls.="" quantification="" raw="" rec="" recovery="" reflect="" results="" rounded="" same="" sample="" significant="" td="" tef,="" teq="" that="" the="" therefore="" this="" to="" toxic="" up="" values="" where="" who-tef="" who-teq(0.5)="" who-teq(pql)="" world="" zero=""></pql>
ORG-025_PAH	Determination of semi-volatile organic compounds (SVOCs) by GC-MS-MS. Water samples are extracted by LLE and solids using DCM/Acetone/Methanol. For PAHs:- Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql "total="" 'teq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" calculations,="" can="" conservative="" contribute="" contributing="" example,="" false="" for="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore,="" this="" to="" total="" values="" when="" zero'="" zero.=""></pql>
ORG-029	Soil/solid and sorbent samples are extracted with basified Methanol. Waters and soil/sorbent extracts are directly injected and/or concentrated/extracted using SPE. TCLP/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3. Analysis is undertaken with LC-MSMS. PFAS results include the sum of branched and linear isomers where applicable. Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Your Reference: Harvey Fresh HF

Result Definitions

Identifier	Description
NR	Not reported
NEPM	National Environment Protection Measure
NS	Not specified
LCS	Laboratory Control Sample
RPD	Relative Percent Difference
>	Greater than
<	Less than
PQL	Practical Quantitation Limit
INS	Insufficient sample for this test
NA	Test not required
NT	Not tested
DOL	Samples rejected due to particulate overload (air filters only)
RFD	Samples rejected due to filter damage (air filters only)
RUD	Samples rejected due to uneven deposition (air filters only)
##	Indicates a laboratory acceptance criteria outlier, for further details, see Result Comments and/or QC Comments

Quality Control Definitions

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, and is determined by processing solvents and reagents in exactly the same manner as for samples.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

Duplicate

This is the complete duplicate analysis of a sample from the process batch. The sample selected should be one where the analyte concentration is easily measurable.

Your Reference: Harvey Fresh HF

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis.

General Acceptance Criteria (GAC) - Analyte specific criteria applies for some analytes and is reflected in QC recovery tables.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QAQC tables for details (available on request); <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was typically insufficient in order to satisfy laboratory QA/QC protocols.

Miscellaneous Information

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. We have taken the sampling date as being the date received at the laboratory.

Two significant figures are reported for the majority of tests and with a high degree of confidence, for results <10*PQL, the second significant figure may be in doubt i.e. has a relatively high degree of uncertainty and is provided for information only.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS where sediment/solids are included by default.

Urine Analysis - The BEI values listed are taken from the 2022 edition of TLVs and BEIs Threshold Limits by ACGIH.

Air volume measurements are not covered by Envirolab's NATA accreditation.

Your Reference: Harvey Fresh HF

Data Quality Assessment Summary PFD0586

Client Details

Client Harvey Water

Your Reference Harvey Fresh HF

Date Issued 22/04/2024

Recommended Holding Time Compliance

No recommended holding time exceedances

Quality Control and QC Frequency

QC Type	Compliant	Details
Blank	Yes	No Outliers
LCS	Yes	No Outliers
Duplicates	Yes	No Outliers
Matrix Spike	Yes	No Outliers
Surrogates / Extracted Internal Standards	Yes	No Outliers
QC Frequency	No	QC Frequency Outliers Exist - See detailed list below

Surrogates/Extracted Internal Standards, Duplicates and/or Matrix Spikes are not always relevant/applicable to certain analyses and matrices. Therefore, said QC measures are deemed compliant in these situations by default. See Laboratory Acceptance Criteria for more information

Your Reference: Revision: R-00 Harvey Fresh HF

Certificate of Analysis Generated: 22/04/2024 15:47

Data Quality Assessment Summary PFD0586

Recommended Holding Time Compliance

Analysis	Sample Number(s)	Date Sampled	Date Extracted	Date Analysed	Compliant
PAH TR Water	1-3	08/04/2024	11/04/2024	12/04/2024	Yes
PCB Congeners Water	1, 3	08/04/2024	12/04/2024	15/04/2024	Yes
	2	08/04/2024	12/04/2024	16/04/2024	Yes
1,2,3,4,6,7,8-HpCDD Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,4,6,7,8-HpCDF Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,4,7,8,9-HpCDF Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,4,7,8-HxCDD Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,4,7,8-HxCDF Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,6,7,8-HxCDD Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,6,7,8-HXCDF Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
77777	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,7,8,9-HxCDD Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,7,8,9-HxCDF Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
JEJST TOTS TIXED! Water	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,7,8-PeCDD Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
.,2,3,7,0-FECDD Water	2	08/04/2024	15/04/2024	20/04/2024	Yes
1,2,3,7,8-PeCDF Water					Yes
.,2,3,7,8-PECDF Water	1, 3 2	08/04/2024 08/04/2024	15/04/2024 15/04/2024	19/04/2024 20/04/2024	Yes
2.4.6.7.0 lb:CDE W-b					
2,3,4,6,7,8-HxCDF Water	1, 3 2	08/04/2024 08/04/2024	15/04/2024 15/04/2024	19/04/2024 20/04/2024	Yes Yes
2,3,4,7,8-PeCDF Water	1, 3 2	08/04/2024	15/04/2024	19/04/2024	Yes
		08/04/2024	15/04/2024	20/04/2024	Yes
2,3,7,8-TCDD Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
2,3,7,8-TCDF Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
OCDD Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
OCDF Water	1, 3	08/04/2024	15/04/2024	19/04/2024	Yes
	2	08/04/2024	15/04/2024	20/04/2024	Yes
Chlorophyll a Water	1-3	08/04/2024	09/04/2024	16/04/2024	Yes
PFAS - ISTD (Short) Water	1-3	08/04/2024	12/04/2024	12/04/2024	Yes
PFAS-Short Water	1-3	08/04/2024	12/04/2024	12/04/2024	Yes

Your Reference: Revision: R-00 Harvey Fresh HF

Certificate of Analysis Generated: 22/04/2024 15:47

Data Quality Assessment Summary PFD0586

Outliers: QC Frequency

INORG-119 | Inorganics - Nutrients (Water) | Batch BFD1540

Analysis	QC Type	Expected	Reported
Chlorophyll a	Duplicate	1	0

ORG-025 | Polychlorinated Biphenyls - Trace Level (Water) | Batch BFD1417

Analysis	QC Type	Expecte	ed Reported
PCB Congeners	Duplicate	1	0
	Matrix Spike	1	0

ORG-029 | PFAS Short List (Water) | Batch BFD1701

Analysis	QC Type	Expected	g Reported
PFAS - ISTD (Short)	Matrix Spike	1	0
PFAS-Short	Matrix Spike	1	0

Your Reference: Revision: R-00 Harvey Fresh HF

Certificate of Analysis Generated: 22/04/2024 15:47

ORG-025_PAH | Polycyclic Aromatic Hydrocarbons - Trace Level (Water) | Batch BFD1238

Analyte	Units	PQL	Blank	DUP1 PFD0586-01 Samp QC RPD %	LCS %	Spike % PFD0586-02
Naphthalene	μg/L	0.020	<0.020	<0.020 <0.020 [NA]	100	83.4
Acenaphthylene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
Acenaphthene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
Fluorene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	106	93.2
Phenanthrene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	93.5	87.9
Anthracene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
Fluoranthene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	101	90.5
Pyrene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	101	91.3
Benzo(a)anthracene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
Chrysene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	98.4	85.8
Benzo(b,j,k)fluoranthene	μg/L	0.020	<0.020	<0.020 <0.020 [NA]	[NA]	[NA]
Benzo(a)pyrene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	95.5	90.8
Indeno(1,2,3-c,d)pyrene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
Dibenzo(a,h)anthracene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
Benzo(g,h,i)perylene	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	[NA]	[NA]
Surrogate p-Terphenyl-D14	%		80.6	80.5 106	102	86.6

ORG-025 | Polychlorinated Biphenyls - Trace Level (Water) | Batch BFD1417

				LCS %
Analyte	Units	PQL	Blank	
PCB C28	μg/L	0.0010	<0.0010	[NA]
PCB C52	μg/L	0.0010	<0.0010	[NA]
PCB C101	μg/L	0.00050	<0.00050	[NA]
PCB C103	μg/L			118
PCB C118	μg/L	0.00050	<0.00050	[NA]
PCB C138	μg/L	0.00050	<0.00050	[NA]
PCB C153	μg/L	0.00050	<0.00050	[NA]
PCB C180	μg/L	0.00050	<0.00050	[NA]
Surrogate 2-Fluorobiphenyl	%		102	104

Your Reference: Harvey Fresh HF

ORG-025_DIOXIN|Dioxins/Furans (Water) | Batch BFD1589

Your Reference: Harvey Fresh HF

ORG-025_DIOXIN|Dioxins/Furans (Water) | Batch BFD1589

				DUP1	LCS %	Spike %
Analyte	Units	PQL	Blank	BFD1589-DUP1#		BFD1589-MS1
2,3,7,8-TCDD	pg/L	5.0	<5.0	Samp QC RPD % <5.0 <5.0 [NA]	92.4	95.9
Surrogate 13C-2,3,7,8-TCDD	%	5.0	109	102/112	86.1	107
2,3,7,8-TCDD WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
2,3,7,8-TCDD WHO-TEQ2	pg/L		2.50	2.50 2.50 0.00	[NA]	[NA]
2,3,7,8-TCDD WHO-TEQ3	pg/L		5.00	5.00 5.00 0.00	[NA]	[NA]
2,3,7,8-TCDD I-TEQ1	pg/L		0.00	0.00 0.00 0.00 0.00	[NA]	[NA]
2,3,7,8-TCDD I-TEQ2	pg/L		2.50	2.50 2.50 0.00	[NA]	[NA]
			5.00	5.00 5.00 0.00		
2,3,7,8-TCDD I-TEQ3	pg/L	20	<20	· ·	[NA]	[NA]
1,2,3,7,8-PeCDD	pg/L	20		<20 <20 [NA]	105	81.8
Surrogate 13C-1,2,3,7,8-PeCDD	%		107	94.8/109	83.5	102
1,2,3,7,8-PeCDD WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
1,2,3,7,8-PeCDD WHO-TEQ2	pg/L		10.0	10.0 10.0 0.00	[NA]	[NA]
1,2,3,7,8-PeCDD WHO-TEQ3	pg/L		20.0	20.0 20.0 0.00	[NA]	[NA]
1,2,3,7,8-PeCDD I-TEQ1	pg/L		0.00	[AN] 00.0 00.0	[NA]	[NA]
1,2,3,7,8-PeCDD I-TEQ2	pg/L		5.00	5.00 5.00 0.00	[NA]	[NA]
.,2,3,7,8-PeCDD I-TEQ3	pg/L		10.0	10.0 10.0 0.00	[NA]	[NA]
.,2,3,4,7,8-HxCDD	pg/L	20	<20	<20 <20 [NA]	106	71.2
Surrogate 13C-1,2,3,4,7,8-HxCDD	%		112	99.5 115	90.9	112
1,2,3,4,7,8-HxCDD WHO-TEQ1	pg/L		0.00	0.00 00.0 [NA]	[NA]	[NA]
1,2,3,4,7,8-HxCDD WHO-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
1,2,3,4,7,8-HxCDD WHO-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,4,7,8-HxCDD I-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
,2,3,4,7,8-HxCDD I-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
.,2,3,4,7,8-HxCDD I-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
,2,3,6,7,8-HxCDD	pg/L	20	<20	<20 <20 [NA]	107	88.4
Surrogate 13C-1,2,3,6,7,8-HxCDD	%		107	88.9/110	81.1	92.8
.,2,3,6,7,8-HxCDD WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
.,2,3,6,7,8-HxCDD WHO-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
.,2,3,6,7,8-HxCDD WHO-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,6,7,8-HxCDD I-TEQ1			0.00	0.00 0.00 [NA]	[NA]	[NA]
	pg/L		1.00			
1,2,3,6,7,8-HxCDD I-TEQ2	pg/L			1.00 1.00 0.00	[NA]	[NA]
1,2,3,6,7,8-HxCDD I-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,7,8,9-HxCDD	pg/L	20	<20	<20 <20 [NA]	112	84.5
1,2,3,7,8,9-HxCDD WHO-TEQ1	pg/L		0.00	[AN] 00.0 00.0	[NA]	[NA]
1,2,3,7,8,9-HxCDD WHO-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
1,2,3,7,8,9-HxCDD WHO-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,7,8,9-HxCDD I-TEQ1	pg/L		0.00	0.00 00.0 [NA]	[NA]	[NA]
1,2,3,7,8,9-HxCDD I-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
1,2,3,7,8,9-HxCDD I-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,4,6,7,8-HpCDD	pg/L	20	<20	<20 <20 [NA]	112	80.1
Surrogate 13C-1,2,3,4,6,7,8-HpCDD	%		105	104 120	83.6	103
1,2,3,4,6,7,8-HpCDD WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
,2,3,4,6,7,8-HpCDD WHO-TEQ2	pg/L		0.100	0.100 0.100 0.00	[NA]	[NA]
.,2,3,4,6,7,8-HpCDD WHO-TEQ3	pg/L		0.200	0.200 0.200 0.00	[NA]	[NA]
.,2,3,4,6,7,8-HpCDD I-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
.,2,3,4,6,7,8-HpCDD I-TEQ2	pg/L		0.100	0.100 0.100 0.00	[NA]	[NA]
.,2,3,4,6,7,8-HpCDD I-TEQ3	pg/L		0.200	0.200 0.200 0.00	[NA]	[NA]
DCDD	pg/L	50	<50	<50 <50 [NA]	116	79.8
Surrogate 13C-OCDD	%		105	84.0/105	81.6	105
OCDD WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
OCDD WHO-TEQ2	pg/L		0.00750	0.00750 0.00750 0.00	[NA]	[NA]
OCDD WHO-TEQ3	pg/L		0.00730	0.0150 0.0150 0.00	[NA]	[NA]
OCDD I-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
OCDD I-TEQ2	pg/L		0.0250	0.0250 0.0250 0.00	[NA]	[NA]
OCDD I-TEQ3	pg/L	F.^	0.0500	0.0500 0.0500 0.00	[NA]	[NA]
2,3,7,8-TCDF	pg/L	5.0	<5.0	<5.0 <5.0 [NA]	103	89.1
Surrogate 13C-2,3,7,8-TCDF	%		108	101 119	83.1	104

Your Reference:

Harvey Fresh HF

ORG-025_DIOXIN|Dioxins/Furans (Water) | Batch BFD1589

				DUP1	LCS %	Spike %
Analyte	Units	PQL	Blank	BFD1589-DUP1#		BFD1589-MS1
2,3,7,8-TCDF WHO-TEQ1	pg/L		0.00	Samp QC RPD % 0.00 0.00 [NA]	[NA]	[NA]
2,3,7,8-TCDF WHO-TEQ2	pg/L		0.250	0.250 0.250 0.00	[NA]	[NA]
2,3,7,8-TCDF WHO-TEQ3	pg/L		0.500	0.500 0.500 0.00	[NA]	[NA]
2,3,7,8-TCDF WHO-TEQ3			0.00	0.00 0.00 [NA]	[NA]	[NA]
	pg/L		0.250	0.250 0.250 0.00		
2,3,7,8-TCDF I-TEQ2	pg/L			<u>'</u>	[NA]	[NA]
2,3,7,8-TCDF I-TEQ3	pg/L	20	0.500	0.500 0.500 0.00	[NA]	[NA]
1,2,3,7,8-PeCDF	pg/L	20	<20	<20 <20 [NA]	105	80.8
Surrogate 13C-1,2,3,7,8-PeCDF	%		107	93.8/113	84.8	105
1,2,3,7,8-PeCDF WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
1,2,3,7,8-PeCDF WHO-TEQ2	pg/L		0.300	0.300 0.300 0.00	[NA]	[NA]
1,2,3,7,8-PeCDF WHO-TEQ3	pg/L		0.600	0.600 0.600 0.00	[NA]	[NA]
1,2,3,7,8-PeCDF I-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
1,2,3,7,8-PeCDF I-TEQ2	pg/L		0.500	0.500 0.500 0.00	[NA]	[NA]
1,2,3,7,8-PeCDF I-TEQ3	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
2,3,4,7,8-PeCDF	pg/L	20	<20	<20 <20 [NA]	107	83.0
Surrogate 13C-2,3,4,7,8-PeCDF	%		108	95.0 112	82.1	103
2,3,4,7,8-PeCDF WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
2,3,4,7,8-PeCDF WHO-TEQ2	pg/L		3.00	3.00 3.00 0.00	[NA]	[NA]
2,3,4,7,8-PeCDF WHO-TEQ3	pg/L		6.00	6.00 6.00 0.00	[NA]	[NA]
2,3,4,7,8-PeCDF I-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
2,3,4,7,8-PeCDF I-TEQ2	pg/L		5.00	5.00 5.00 0.00	[NA]	[NA]
2,3,4,7,8-PeCDF I-TEQ3	pg/L		10.0	10.0 10.0 0.00	[NA]	[NA]
1,2,3,4,7,8-HxCDF	pg/L	20	<20	<20 <20 [NA]	110	77.6
Surrogate 13C-1,2,3,4,7,8-HxCDF	%		111	94.5/109	84.3	103
			0.00		[NA]	[NA]
1,2,3,4,7,8-HxCDF WHO-TEQ1	pg/L			0.00 00.0 [NA]		
1,2,3,4,7,8-HxCDF WHO-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
1,2,3,4,7,8-HxCDF WHO-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,4,7,8-HxCDF I-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
1,2,3,4,7,8-HxCDF I-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
1,2,3,4,7,8-HxCDF I-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,6,7,8-HxCDF	pg/L	20	<20	<20 <20 [NA]	108	84.8
Surrogate 13C-1,2,3,6,7,8-HxCDF	%		109	89.7 112	84.8	97.9
1,2,3,6,7,8-HxCDF WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
1,2,3,6,7,8-HxCDF WHO-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
1,2,3,6,7,8-HxCDF WHO-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,6,7,8-HxCDF I-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
1,2,3,6,7,8-HxCDF I-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
1,2,3,6,7,8-HxCDF I-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,7,8,9-HxCDF	pg/L	20	<20	<20 <20 [NA]	109	80.3
Surrogate 13C-1,2,3,7,8,9-HxCDF	%		102	94.0 115	80.5	92.9
1,2,3,7,8,9-HxCDF WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
1,2,3,7,8,9-HxCDF WHO-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
1,2,3,7,8,9-HxCDF WHO-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,7,8,9-HxCDF I-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
1,2,3,7,8,9-HxCDF I-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
1,2,3,7,8,9-HxCDF I-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
		20		· · ·		
2,3,4,6,7,8-HxCDF	pg/L	20	<20	<20 <20 [NA]	103	78.0
Surrogate 13C-2,3,4,6,7,8-HxCDF	%		109	91.2/110	88.2	103
2,3,4,6,7,8-HxCDF WHO-TEQ1	pg/L		0.00	0.00 0.00 [NA]	[NA]	[NA]
2,3,4,6,7,8-HxCDF WHO-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
2,3,4,6,7,8-HxCDF WHO-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
2,3,4,6,7,8-HxCDF I-TEQ1	pg/L		0.00	0.00 00.0 [NA]	[NA]	[NA]
2,3,4,6,7,8-HxCDF I-TEQ2	pg/L		1.00	1.00 1.00 0.00	[NA]	[NA]
2,3,4,6,7,8-HxCDF I-TEQ3	pg/L		2.00	2.00 2.00 0.00	[NA]	[NA]
1,2,3,4,6,7,8-HpCDF	pg/L	20	<20	<20 <20 [NA]	112	78.4
Surrogate 13C-1,2,3,4,6,7,8-HpCDF	%		106	90.3 116	82.6	101

Your Reference: Harvey Fresh HF

ORG-025_DIOXIN|Dioxins/Furans (Water) | Batch BFD1589

Analyte	Units	PQL	Blank	DUP1 BFD1589-DUP1# Samp QC RPD %	LCS %	Spike % BFD1589-MS1#
1,2,3,4,6,7,8-HpCDF WHO-TEQ2	pg/L		0.100	0.100 0.100 0.00	[NA]	[NA]
1,2,3,4,6,7,8-HpCDF WHO-TEQ3	pg/L		0.200	0.200 0.200 0.00	[NA]	[NA]
1,2,3,4,6,7,8-HpCDF I-TEQ1	pg/L		0.00	0.00 00.0 [NA]	[NA]	[NA]
1,2,3,4,6,7,8-HpCDF I-TEQ2	pg/L		0.100	0.100 0.100 0.00	[NA]	[NA]
1,2,3,4,6,7,8-HpCDF I-TEQ3	pg/L		0.200	0.200 0.200 0.00	[NA]	[NA]
1,2,3,4,7,8,9-HpCDF	pg/L	20	<20	<20 <20 [NA]	112	79.5
Surrogate 13C-1,2,3,4,7,8,9-HpCDF	%		107	89.6 115	84.8	104
1,2,3,4,7,8,9-HpCDF WHO-TEQ1	pg/L		0.00	0.00 00.0 [NA]	[NA]	[NA]
1,2,3,4,7,8,9-HpCDF WHO-TEQ2	pg/L		0.100	0.100 0.100 0.00	[NA]	[NA]
1,2,3,4,7,8,9-HpCDF WHO-TEQ3	pg/L		0.200	0.200 0.200 0.00	[NA]	[NA]
1,2,3,4,7,8,9-HpCDF I-TEQ1	pg/L		0.00	0.00 00.0 [NA]	[NA]	[NA]
1,2,3,4,7,8,9-HpCDF I-TEQ2	pg/L		0.100	0.100 0.100 0.00	[NA]	[NA]
1,2,3,4,7,8,9-HpCDF I-TEQ3	pg/L		0.200	0.200 0.200 0.00	[NA]	[NA]
OCDF	pg/L	50	<50	<50 <50 [NA]	116	80.6
OCDF WHO-TEQ1	pg/L		0.00	0.00 00.0 [NA]	[NA]	[NA]
OCDF WHO-TEQ2	pg/L		0.00750	0.00750 0.00750 0.00	[NA]	[NA]
OCDF WHO-TEQ3	pg/L		0.0150	0.0150 0.0150 0.00	[NA]	[NA]
OCDF I-TEQ1	pg/L		0.00	0.00 00.0 [NA]	[NA]	[NA]
OCDF I-TEQ2	pg/L		0.0250	0.0250 0.0250 0.00	[NA]	[NA]
OCDF I-TEQ3	pg/L		0.0500	0.0500 0.0500 0.00	[NA]	[NA]

[#] The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-119 | Inorganics - Nutrients (Water) | Batch BFD1540

Analyte	Units	PQL	Blank	LCS %
Chlorophyll a	mg/m3	1.0	<1.0	96.1

ORG-029 | PFAS Short List (Water) | Batch BFD1701

Analyte	Units	PQL	Blank	DUP1 PFD0586-01 Samp QC RPD %	LCS %
Perfluorohexanesulfonic acid (PFHxS)	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	109
Perfluorooctanesulfonic acid (PFOS)	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	111
Perfluorooctanoic acid (PFOA)	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	110
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	μg/L	0.010	<0.010	<0.010 <0.010 [NA]	107
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	μg/L	0.020	<0.020	<0.020 <0.020 [NA]	105
Surrogate 13C8 PFOS	%		105	97.6 99.6	104
Surrogate 13C2 PFOA	%		104	91.8 93.7	92.8
Extraction Internal Standard 1802 PFHxS	%		96.4	92.7 94.7 2.12	[NA]
Extraction Internal Standard 13C4 PFOS	%		96.7	100 99.5 0.671	[NA]
Extraction Internal Standard 13C4 PFOA	%		94.1	101 97.2 3.99	[NA]
Extraction Internal Standard 13C2 6:2FTS	%		89.4	82.6 85.0 2.82	[NA]
Extraction Internal Standard 13C2 8:2FTS	%		116	93.5 115 20.6	[NA]

Your Reference: Harvey Fresh HF